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Can Math  
Solve the 
Gerrymandering 
Problem?

In early October, the U.S. Supreme Court heard oral 
arguments in Gill v. Whitford, a case about partisan 
gerrymandering in Wisconsin. The highly anticipated case 
could transform the way congressional and legislative 
district lines are drawn. And mathematicians — including 
Carnegie Mellon’s Alan Frieze and Wesley Pegden — are 
weighing in. Frieze and Pegden’s work is cited in an 
amicus brief filed on behalf of the plaintiffs that addresses 
a question at the heart of the case: Is there a way to 
determine, in an unbiased, practical way, that extreme 
partisan gerrymandering has actually occurred? 

Politicians have been gerrymandering — drawing 
congressional districts to favor one party or candidate 
over another — since the early 1800s, and the Supreme 
Court has considered its constitutionality many times. 
In 2004, the high court upheld a lower court’s ruling 
that the partisan gerrymander in question was not 
unconstitutional, in part because no standards existed 
for adjudicating partisan gerrymandering claims. But 
Justice Anthony Kennedy posited that such a standard 
might one day exist. Frieze and Pegden’s work could 
provide that standard. 

CMU mathematicians’ work on detecting bias  
in congressional district maps makes its  
debut before the U.S. Supreme Court
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Our method demonstrates the current districting of Pennsylvania is 
an outlier, in the sense that it is more biased than the overwhelming 
majority of geometrically similar districtings. The districting above 
is the current Congressional districting of Pennsylvania, and the 
districting below is an example of an alternative districting of 
Pennsylvania preserving the same counties as the present districting, 
and with similar overall district geometry (as measured by total 
district perimeter). This example was produced by roughly 750 billion 
steps of our Markov Chain. Furthermore, the districting below is more 
fair under various accepted measures of partisan bias. 
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In a paper published in the Proceedings of the National 
Academy of Sciences, Frieze, Pegden and the University  
of Pittsburgh’s Maria Chikina used a Markov chain (see  
page 18) to rigorously demonstrate bias in the congressional 
districting maps of the state of Pennsylvania. 

“The idea is, if you want to evaluate whether a particular 
division of a state is fair, a natural thing to try to do is to 
compare it to a typical districting — in other words, a 
random one,” Pegden said. “Our method takes the actual 
layout of where people live, their political affiliation, and tests 
in a rigorous way whether the current districting is much 
worse than other typical districtings of the same state.”

They began with a current map of Pennsylvania’s 
congressional districts, and then ran the chain, which 
changed the map in random steps — wiggling little 
municipalities here and moving little groups of people 
across boundaries there. The shapes of the districts slowly 
changed while keeping a roughly equal population in 
each. The mathematicians observed that their simulation’s 
randomly “redrawn” districts are much fairer that the initial 
district map they started with.

“Out of all the trillion districtings that we saw in this 
sequence of random steps, none of them were as bad 
as the very first one. What that shows is that this initial 
districting is much worse than other random districtings,” 
Pegden said, adding, “There is no way that this map could 
have been produced by an unbiased process.”

In June, Frieze and Pegden’s method became part 
of a lawsuit filed by the League of Women Voters of 
Pennsylvania. The lawsuit is asking that the state’s 
congressional district map be thrown out. 

Shortly after that, Pegden heard from Nicholas 
Stephanopoulos, one of the attorneys for the plaintiff in the 
Wisconsin case. Stephanopoulos was interested in seeing 
what their analysis could say about Wisconsin. Pegden got 
to work. “To be doing some math on a deadline because the 
Supreme Court is going to hear a case? You don’t usually 
have that,” he joked. 

Pegden downloaded the Wisconsin voter data and ran  
the simulation. It turned out that the Wisconsin result  
was, in some sense, even cleaner than Pennsylvania’s.  
“In Wisconsin, they did an amazing job gerrymandering. It’s 
a beauty of extreme gerrymandering. It’s really unbelievable.” 

Will the Supreme Court justices agree?  
We’ll find out next spring.

“In Wisconsin ... It’s a beauty of extreme gerrymandering.”

At right, above is the present 
Assembly districting of 
Wisconsin, and below  
that is an alternative map 
produced by roughly  
1 trillion steps of our Markov 
chain. Note that superficially, 
the districtings are similar; 
our test works by showing 
that the current districting 
is politically unusual among 
the districtings with similar 
geometric properties.
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The Work of John Nash, continued

In past and ongoing legal cases concerning the 
constitutionality of gerrymandering  
political districtings, a key question for courts 
has been the extent to which it is possible to 
rigorously evaluate claims of gerrymandering  
in a practical way.

Take, for example, the 2012 elections for 
congressional seats in Pennsylvania. Democrats 
won more than 50 percent of the total vote 
for Congressional seats in Pennsylvania, but 
won only five out of the 18 seats at stake. To 
Democrats, this is clear grounds to call foul. 
But wait! Republicans can (and do) point out 
that the distribution of Democratic voters itself 
is likely to cost the Democrats Congressional 
seats, without any nefarious districting efforts 
by Republicans. Cities tend to be strong 
bastions of support for the Democratic party: 
the current Congressman for Pennsylvania’s 
2nd district (in Philadelphia) won his general 
election with more than 90 percent of the 
vote. On the other hand, no Congressional 
district in the country is so solidly Republican. 
Democratic voters really are more concentrated 
than Republican voters are, which really does 
create a greater potential for Democrats to 
waste more votes in districts where they have 
strong supermajorities, and thus win fewer 
seats in Congress than Republicans would at 
the same overall level of support.

The question, then, is how to tell when the 
districting of a state is responsible for bias 
toward one political party, rather than just the 
state’s existing political geography. How can 
we tell when the bias of a particular political 
districting is really atypical among the space of 
valid districtings of the same state? To rephrase 
this mathematically, how can we tell that a 
districting is more biased than a random valid 
districting of the same state?

First, we need to have a notion of what 
constitutes a valid districting of the state. 
Certainly, districts should be contiguous, 
and nearly equal in population. There should 
also be geometric constraints on the districts 
(for example, ensuring that the square of the 
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perimeter of a district is not much larger  
than its area) to forbid fractal-like districts. 
Other requirements for valid districtings 
may include not splitting many counties, 
and respecting other natural requirements 
considered by legislatures.

Let's imagine that we have a bag full of 
hypothetical “valid” districtings of a state 
satisfying all of our requirements. Now we  
just need to pull a lot of random districtings 
out of our bag and compare them to the 
actual districting of our state. We would 
conclude that our districting is gerrymandered 
if it is more biased toward one political party 
than the vast majority of the random samples. 
(For you statisticians: if it’s more biased 
than 99.9999995% of random districtings, 
it would be gerrymandered at a p-value of 
.000000005.)

The problem is: How do we pull things out  
of this bag of districts? In other words, how  
do we generate random geometric partitions 
of a region (a state) satisfying various 
constraints? One natural way to try to draw 
samples from a weird distribution like this is 
to use Markov chains, which are used for 
sampling in areas as disparate as protein 
folding and statistical mechanics.

Essentially, a Markov chain is a process 
that takes a random walk along a set of 
possibilities by making a sequence of small 
changes. Formally speaking, it is a sequence 
of random variables

  X0 , X1 , X2 , X3 , …

taking values on some state-space ∑,  
such that, for each i, and for any states  
σ0 , . . . , σi ∈ ∑, the conditional probability

 

depends only on the choice of i, σi , and σi –1. 
In other words, the process is a random walk 
in the sense that it has no memory; where it 
ends up at step i depends only on where it 
was at step i − 1.

In the case of political districtings, a state is 
divided into thousands of little geographic 
regions (precincts) used by the census. 
We can make a small random change to 
a districting by selecting a precinct on the 

boundary of two districts, and switching 
which district it belongs to, so long as the 
result still satisfies our requirements on valid 
districtings. The magic of Markov chains is 
that, under relatively mild assumptions, there 
are nice theorems that tell you that no matter 
where you start a Markov chain, after you run 
it for long enough, it will essentially be at a 
random configuration, drawn from a stationary 
distribution of the Markov chain; this is a 
distribution π such that 

     
X0 ~ π  ( Ai)  Xi ~ π

In other words, the stationary distribution π has 
the property that drawing a random sample 
according to π and then running the Markov 
chain for any number of steps still results in a 
sample drawn according to π.

In the case of political districtings, this means 
that we just need to run the chain long 
enough, and it will eventually spit out random 
valid districtings of our state according to the 
stationary distribution of the chain, which is just 
what we need to make our statistical claims 
of gerrymandering! We should note that it is 
possible to carefully construct our chain so that 
π is uniform over all valid districtings of our state.

The problem is that, though these nice 
theorems do tell us that our Markov chain will 
generate random districtings eventually, they 
unfortunately tell us nothing about how long 
we have to run it before this is the case. Thus, 
we can’t actually run our chain for a long time 
and then claim rigorously to have shown that a 
districting is gerrymandered. For all we know, 
we may just not have run the Markov chain 
long enough to see truly random districtings for 
comparison. This problem actually pervades 
many scientific applications of Markov chains. 
Frequently, they are used to generate random 
samples when there is not enough theory 
to guarantee that samples being generated 
are actually random; this can and does lead 
to disagreement among different research 
groups about when a result is valid and when 
it’s not. And there have been situations (e.g., 
simulations of the Potts model from statistical 
physics) in which practitioners have developed 
modified Markov chains that they believed, 
based on evidence from simulations, achieved 
faster convergence, but later found that the 

chains still had exponential mixing times in many 
settings.

In our work with Maria Chikina and Alan Frieze, 
we proved a new general theorem about Markov 
chains that avoids this problem when the reason 
we are using a Markov chain to generate random 
samples is (as in our application) to demonstrate 
that a specific element of our space is an outlier. 
Specifically, we proved the following:

Theorem 1. Let M = X0 , X1 , … be a reversible 
Markov chain with a stationary distribution π, and 
suppose the states of M have real-valued labels. 
If X0 ~ π, then for any fixed k, the probability that 
the label of X0 is an ε-outlier from among the list 
of labels observed in the trajectory  
X0 , X1 , X2 , … , Xk is at most √2ε.

Here, being an ε-outlier means that the label of 
the state X0 is smaller (or larger) than all but an 
ε fraction of the labels seen on the trajectory; 
in our application to redistricting, the label of a 
districting can be the number of seats Republicans 
would have won in a hypothetical election with 
the districting in question. The requirement that 
the Markov chain is reversible essentially means 
that the random changes the Markov chain makes 
when taking its random walk can be undone just 
as easily as they can be done; this is a common 
feature of Markov chains used for sampling.

Theorem 1 leads us to the following new  
statistical test for reversible Markov chains:

The √ε test: Observe a trajectory σ0 , σ1 , σ2 … , σk 
from the state σ0 , for any fixed k. The event that 
the label of σ0 is an ε-outlier among the labels of 
σ0 , … , σk is significant at p =√2ε, under the 
null-hypothesis that σ0 ~ π.

For our redistricting problem, this means that if 
we start our Markov chain from the current 
districting of our state, run it for as long as we 
want (since k is arbitrary here) and then observe 
that the current districting of our state is more 
biased than 99.9999995% of the districtings 
encountered by the Markov chain along the way, 
then this is significant at

p =√2 • .000000005 = .0001

which, while not as good as significance at  
p = .000000005, is still good enough for 
government work.

Pr (Xi = σi | X0 = σ0 , X1 = σ1 , …, Xi –1 = σi –1 ) 


